

ASSERTION REASON TYPE QUESTIONS

For CBSE 2025 Exams - Mathematics - Class 10

 $\chi = \frac{-6 \pm \sqrt{6^2 - 4^2}}{2a}$

In the following questions, a statement of **Assertion (A)** is followed by a statement of **Reason (R)**. Choose the correct answer out of the following choices.

- (a) Both A and R are true and R is the correct explanation of A.
- (b) Both A and R are true and R is not the correct explanation of A.
- (c) A is true but R is false.
- (d) A is false but R is true.

♦ Chapter-01 Real Numbers

Q01. **Assertion (A):** The perimeter of $\triangle ABC$ is a rational number. **Reason (R):** The sum of the squares of two rational numbers is always rational.

- Q02. **Assertion (A):** The number 5ⁿ cannot end with the digit 0, where n is a natural number. **Reason (R):** Prime factorisation of 5 has only two factors, 1 and 5.
- Q03. **Assertion (A)**: $\sqrt{2}(5-\sqrt{2})$ is an irrational number. **Reason (R)**: Product of two irrational numbers is always irrational.
- Q04. **Assertion (A):** The HCF of two numbers is 5 and their product is 150. Then their LCM is 40. **Reason (R):** For any two positive integers a and b, HCF(a, b)×LCM(a, b) = a×b.

♦ Chapter-02 Polynomials

- Q01. Assertion (A): The polynomial $p(x) = x^2 + 3x + 3$ has two real zeroes.
 - **Reason (R):** A quadratic polynomial can have at most two real zeroes.
- Q02. Assertion (A): Polynomial $x^2 + 4x$ has two real zeroes. Reason (R): Zeroes of the polynomial $x^2 + ax$ ($a \ne 0$) are 0 and a.
- Q03. **Assertion (A):** If one zero of the quadratic polynomial $4x^2 10x + (k-4)$ is reciprocal of the other, then value of k is 8.
 - **Reason (R)**: Zeroes of the quadratic polynomial $x^2 2x + 1$ are real and equal.
- Q04. **Assertion (A):** If $5+\sqrt{7}$ and $5-\sqrt{7}$ are zeroes of a quadratic polynomial, then the polynomial is given by $x^2-10x+18$.
 - **Reason (R):** If α and β are the zeroes of a quadratic polynomial, then the polynomial is given by $x^2 (\alpha + \beta)x + \alpha\beta$.

♦ Chapter-03 Pair of Linear Equations in Two Variables

Q01. Assertion (A): The system of linear equations 3x + 5y - 4 = 0 and 15x + 25y - 25 = 0 is inconsistent.

Reason (R): The pair of linear equations given by $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ is inconsistent if $\frac{a_1}{a_2} = \frac{b_1}{b_2} \neq \frac{c_1}{c_2}$.

- Q02. Assertion (A): Point P(0, 2) is the point of intersection of y-axis with the line 3x + 2y = 4. Reason (R): The distance of point P(0, 2) from x-axis is 2 units.
- Q03. Assertion (A): The pair of linear equations 5x + 2y + 6 = 0 and 7x + 6y + 18 = 0 have infinitely many solutions.

Reason (R): The pair of linear equations given by $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ have infinitely many solutions, if $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$.

Q04. Assertion (A): The two lines given by 2x + 3y = 7 and 4x + 6y = 14 intersect at infinite points.

Reason (R): When $\frac{a_1}{a_2} = \frac{b_1}{b_2} = \frac{c_1}{c_2}$, then the system of linear equations $a_1x + b_1y + c_1 = 0$ and $a_2x + b_2y + c_2 = 0$ has infinite no. of solutions.

♦ Chapter-04 Quadratic Equations

- Q01. **Assertion (A):** Equation $2x^2 + 3x + 4 = 0$ has no real roots. **Reason (R):** When discriminant of a quadratic equation is zero, then the equation has real and distinct roots.
- Q02. **Assertion (A)**: If one root of the quadratic equation $4x^2 10x + (k 4) = 0$ is reciprocal of the other, then value of k is 8.

Reason (R): Roots of the quadratic equation $x^2 - x + 1 = 0$ are real.

Q03. **Assertion (A)**: If $5+\sqrt{7}$ is a root of a quadratic equation with rational coefficients, then its other root is $5-\sqrt{7}$.

Reason (R): Surd roots of a quadratic equation with rational coefficients occur in conjugate pairs.

Q04. Assertion (A): The equation $x^2 + 6x + 9 = 0$ has real and equal roots.

Reason (R): When discriminant $b^2 - 4ac$ of a quadratic equation $ax^2 + bx + c = 0$; $a \ne 0$ is zero, then the equation has real and equal roots.

♦ Chapter-05 Arithmetic Progression

Q01. Assertion (A): a, b, c are in A.P. if and only if 2b = a + c.

Reason (R): The sum of first n odd natural numbers is n^2 .

- Q02. Assertion (A): Common difference of the A.P. 5, 1, -3, -7, ... is 4. Reason (R): Common difference of the A.P. a_1 , a_2 , a_3 , ..., a_n is obtained by $d = a_n a_{n-1}$.
- Q03. Assertion (A): $-5, -\frac{5}{2}, 0, \frac{5}{2}, \dots$ is in arithmetic progression.

Reason (R): The terms of an Arithmetic Progression cannot have both positive and negative rational numbers.

Q04. **Assertion (A):** Sum of n terms of an AP is always a quadratic polynomial. **Reason (R):** General term of an AP is always a quadratic polynomial.

♦ Chapter-06 Triangles

Q01. Assertion (A): If two triangles are similar, their corresponding angles are equal.

Reason (R): Any two equilateral triangles are always similar.

Q02. **Assertion (A)**: If $\Delta_1 \sim \Delta_2$ and $\Delta_2 \sim \Delta_3$, then $\Delta_1 \sim \Delta_3$.

Reason (R): If one polygon is similar to another polygon and this second polygon is similar to a third polygon, then the first polygon is similar to the third polygon.

Q03. **Assertion (A):** If two triangles are similar, their corresponding medians are in the same ratio as their corresponding sides.

Reason (R): Similar triangles have corresponding sides that are proportional.

Q04. Assertion (A): All circles are similar.

Reason (R): All squares are congruent.

♦ Chapter-07 Coordinate Geometry

Q01. Assertion (A): The point (0, 4) lies on y-axis.

Reason (R): The x-coordinate of a point, lying on y-axis, is zero.

Q02. Assertion (A): If the points A(4, 3) and B(x, 5) lie on a circle with centre O(2, 3), then the value of x is 2.

Reason (R): Centre of a circle is the mid-point of each chord of the circle.

Q03. Assertion (A): Mid-point of a line segment divides the line segment in the ratio 1:1.

Reason (R): The ratio in which the point (-3, k) divides the line segment joining the points (-5, 4) and (-2, 3) is 1:2.

Q04. **Assertion (A):** The point which divides the line segment joining the points A(1, 2) and B(-1, 1) intermediate the article $\begin{bmatrix} 1 & 5 \\ 1 & 5 \end{bmatrix}$

internally in the ratio 1:2 is $\left(-\frac{1}{3}, \frac{5}{3}\right)$.

Reason (R): The coordinates of the point which divides the line segment joining the points

$$A(x_1, y_1) \text{ and } B(x_2, y_2) \text{ in the ratio } m_1 : m_2 \text{ are } \left(\frac{m_1 x_2 + m_2 x_1}{m_1 + m_2}, \frac{m_1 y_2 + m_2 y_1}{m_1 + m_2}\right).$$

♦ Chapter-08 Introduction to Trigonometry

Q01. **Assertion (A)**: For $0^{\circ} < \theta \le 90^{\circ}$, $\csc \theta - \cot \theta$ and $\csc \theta + \cot \theta$ are the reciprocal of each other.

Reason (R): $\cot^2 \theta - \csc^2 \theta = 1$.

Q02. **Assertion (A)**: If $\sin A = \frac{1}{3}$, $(0^{\circ} < A < 90^{\circ})$, then the value of $\cos A$ is $\frac{2\sqrt{2}}{3}$.

Reason (R): For every angle θ , $\sin^2 \theta + \cos^2 \theta = 1$.

Q03. **Assertion (A)**: Maximum value of $\frac{1}{\sec \theta} + \frac{1}{\csc \theta}$ is 1.

Reason (R): Maximum value of both $\sin \theta$ and $\cos \theta$ is 1.

Q04. **Assertion (A)**: Value of $\sin \theta$ can never be $\frac{21}{22}$.

Reason (R): Maximum value of $\sin \theta$ is 1.

Q05. **Assertion (A)**: Value of $\cos \theta$ can never be $\frac{22}{21}$.

Reason (R): Maximum value of $\cos \theta$ is 1.

- Q06. **Assertion (A)**: Value of $\tan 60^{\circ}$ is less than the value of $\tan 45^{\circ}$. **Reason (R)**: When $0^{\circ} < \theta < 90^{\circ}$, the value of $\tan \theta$ increases as θ increases.
- Q07. Assertion (A): If $\sin x = \frac{1}{2}$, then the value of $\cos 2x$ is also $\frac{1}{2}$.

Reason (R): If $\tan y = 1$, then $y = 45^{\circ}$.

♦ Chapter-09 Applications of Trigonometry

Q01. Refer the diagram shown below.

Assertion (A): Angle of elevation is 30°.

Reason (R): An angle of elevation is the angle formed between the line of sight and the horizontal line when looking upward from a point.

Q02. Refer the diagram shown below.

Assertion (A): Angle of depression is 60° .

Reason (R): The angle of depression is the angle formed between the line of sight and the horizontal line when looking downward from a point.

♦ Chapter-10 Circles

Q01. Assertion (A): A tangent to a circle is perpendicular to the radius through the point of contact. Reason (R): The lengths of tangents drawn from the external point to a circle are equal.

Q02. **Assertion (A):** The tangents drawn at the end points of a diameter of a circle, are parallel. **Reason (R):** Diameter of a circle is the longest chord.

Q03.

Assertion (A): If the PA and PB are tangents drawn to a circle with centre O from an external point P, then the quadrilateral OAPB is a cyclic quadrilateral.

Reason (R): In a cyclic quadrilateral, opposite angles are equal.

♦ Chapter-11 Areas Related to Circles

Q01. **Assertion (A):** The area of the sector of a circle of radius 14 cm and central angle 90° is 154 cm^2 .

Reason (R): The area of the sector of a circle of radius r and central angle θ is $\pi r^2 \times \frac{\theta}{360}$.

Q02. **Assertion (A):** If the circumference of a circle is 176 cm, then its radius is 28 cm. **Reason (R):** Circumference = $2\pi \times \text{radius}$ of a circle.

Q03. **Assertion (A):** The length of the minute hand of a clock is 7 cm. Then the area swept by minute hand in 5 minute is $\frac{53}{6}$ cm².

Reason (R): The length of an arc of a sector of angle and radius r is given by $l = \frac{\theta}{360^{\circ}} \times 2\pi r$.

Q04. **Assertion (A):** In a circle of radius 6 cm, the angle of a sector 60° . Then the area of the sector is $18\frac{6}{7}$ cm².

Reason (R): Area of the circle with radius r is πr^2 .

♦ Chapter-12 Surface Areas and Volumes

Q01. Assertion (A): The surface area of largest sphere that can be inscribed in a hollow cube of side 'a' cm is πa^2 cm².

Reason (R): The surface area of a sphere of radius 'r' is $\frac{4}{3}\pi r^3$.

- Q02. **Assertion (A):** The diameter of a sphere, whose surface area is 616 cm², is 7 cm. **Reason (R):** The surface area of a sphere of radius r is $4\pi r^2$.
- Q03. **Assertion (A):** Two cubes each of edge length 10 cm are joined together. The total surface area of newly formed cuboid is 1200 cm².

Reason (R): Area of each surface of a cube of side 10 cm is 100 cm².

Q04. **Assertion (A):** Total surface area of the top is the sum of curved surface area of the hemisphere and the curved surface area of the cone.

Reason (R): Top is obtained by fixing the plane surface of the hemisphere and cone together.

♦ Chapter-13 Statistics

Q01. **Assertion (A):** If the Mean and the Median of a distribution are 169 and 170 respectively, then its Mode is 172.

Reason (R): The relation between Mean, Median and Mode is Mode = 3 Median - 2 Mean.

Q02. **Assertion (A):** Mean is the average of all the observations. **Reason (R):** If each observation is increased by 10, mean will also be increased by 10.

♦ Chapter-14 Probability

- Q01. **Assertion (A):** Two players, Sania and Ashnam play a tennis match. The probability of Sania winning the match is 0.79 and that of Ashnam winning the match is 0.21. **Reason (R):** The sum of probabilities of two complementary events is 1.
- Q02. **Assertion (A):** A fair die is thrown once. The probability of getting a prime number is $\frac{1}{2}$. **Reason (R):** A natural number is a prime number if it has only two factors.
- Q03. **Assertion (A):** The probability of getting a prime number, when a die is thrown once, is $\frac{2}{3}$. **Reason (R):** On the faces of a die, prime numbers are 2, 3, and 5.
- Q04. Assertion (A): When two coins are tossed together, the probability of getting no tail is $\frac{1}{4}$.

Reason (R): The probability P(E) of an event E satisfies $0 \le P(E) \le 1$.

Q05. **Assertion (A):** The probability that a leap year has 53 Sundays is $\frac{2}{7}$.

Reason (R): The probability that a non-leap year has 53 Sundays is $\frac{1}{7}$.

Q06. **Assertion (A):** The probability of randomly drawing a card with an even number from a box containing cards numbered 1 to 100 is $\frac{1}{2}$.

Reason (R): $P(event) = \frac{Number of favourable outcomes}{Total number of possible outcomes}$

Please Scan the QR-Code to access video lectures of class 10 Maths to help in your preparation!

#WE-ARE-ON-MISSION

MATHMISSION FOR X (2024-25)

For CBSE Exams • Maths (Standard & Basic)

By O.P. Gupta (Indira Award Winner)

- O Detailed Theory with Examples
- © Subjective type Questions (Chapter-wise : 2, 3 & 5 Markers)
- H.O.T.S. Questions
- **©** COMPETENCY FOCUSED QUESTIONS
 - ☑ Multiple Choices Questions (Chapter-wise)
 - ☑ Assertion-Reason (A-R) Questions (Chapter-wise)
 - ☑ Case Study & Passage-based Questions (Chapter-wise)
- ANSWERS of all Questions

② This FREE PDF is being shared to **HELP** teachers and students of class X. We've **added over 830 Multiple Choice Questions (MCQs)** in our **MATHMISSION FOR X Book by O.P. GUPTA**.

- **☼ MATHMISSION** Books for Classes XII & XI are also available!
- ♦ You can buy our books on Amazon / Flipkart or, message us on WhatsApp @ +919650350480.

For Bulk order related queries at Discounted Price, Please contact by WhatsApp @ +91 9650350480 (only message)

MATHEMATICIA BY O.P. GUPTA

...a name you can bank upon!

Feel Safe to **Share this Document** with other math scholars

CLICK NOW

TO

Download

or, just type theopgupta.com

FREE PDF TESTS AND ASSIGNMENTS OF THE CLASSES XII, XI & X

To get FREE PDF Materials, join **WhatsApp Teachers Group** by Clicking on the Logo

Click on the **Book cover** to buv!

If you are a Student, then you may join our Students Group

CLICK HERE FOR CLASSES XI & XII

You can add our WhatsApp no. +919650350480 to your Groups also

Many Direct Questions from our Books have been asked in the recent CBSE Exams

ATHMISSI OR XII, XI & X

2024-25 Edition

Buv our books on

amazon **Flipkart**